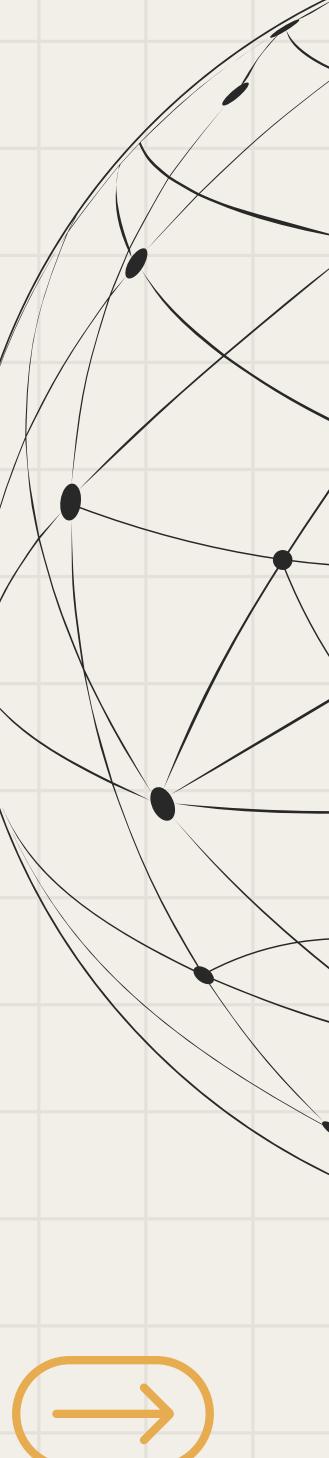


Tutorial – FHIR Implementation Guides with FHIR Shorthand (FSH) language

Introduction to FHIR

Fast Healthcare Interoperability Resources (FHIR) is the latest standard created by Health Level 7 to address the difficulty of data exchange between different health information systems.


What makes it different from its predecessors is that **it adapts to new architectural paradigms and web development technologies.**

It has met with great success, as evidenced by its adoption in interoperability improvement strategies by:

→ **Private Companies**

→ **Public organizations** - [New HL7 Europe FHIR Implementation Guides to support the European Health Data Space](#)

<https://www.hl7.org/fhir>

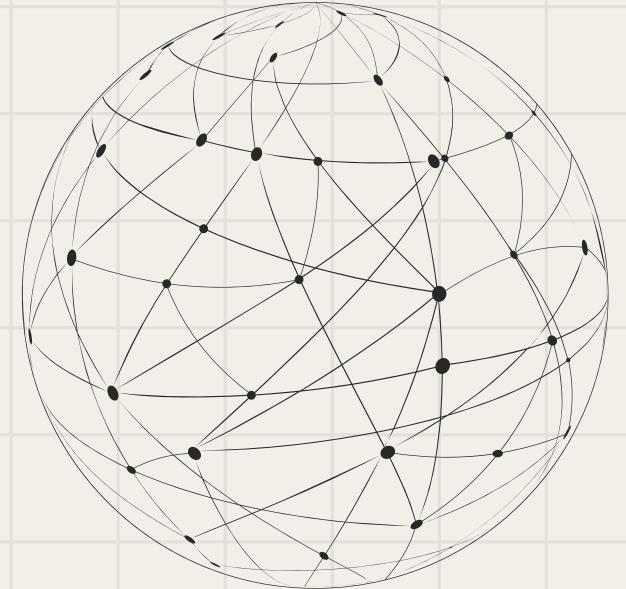
Anatomy of a FHIR implementation guide

A FHIR Implementation guide is a set of documentation, FHIR resources and examples created to solve a specific use case within the healthcare domain.

PRACTICAL EXERCISE: visit the [HL7 FHIR Genomics Reporting Implementation Guide](#). Its use case is the standardization of the exchange of a patient's genetic information so that it can be accessed in structured data format.

In this guide we find **3 fundamental elements**:

- ✓ [documentation](#) (in markdown).
- ✓ [FHIR profiles](#) (in JSON or XML) – special FHIR resources which are used to validate the agreed FHIR structure and terminology.
- ✓ [examples of FHIR resources adapting to the established FHIR profiles](#) (in JSON or XML).


To learn more about HL7 FHIR Genomics Reporting Implementation Guide read:

- [analysis done by the electronic Medical Records and Genomics \(eMerge\)](#) mapping fields from different genetic reports to the guide's profiles.
- read a scientific article about this work here: [Genomic considerations for FHIR®; eMERGE implementation Lessons](#)

Here a [registry of FHIR interoperability guides](#)

How FHIR implementation guides are generated

FHIR Implementation Guides are almost always presented in a standardized manner following templates that allow implementers not to get lost among so much documentation created by different organizations and vendors.

HL7[®]
Affiliate | Switzerland

CH Core (R4)
6.0.0 - trial-use

FHIR[®]

Home Guidance Profiles Extensions Artifacts

Table of Contents > Home

This page is part of the CH Core (R4) (v6.0.0: STU 6) based on FHIR (HL7® FHIR® Standard) R4. This is the current published version. For a full list of available versions, see the [Directory of published versions](#).

1 Home

Official URL: <http://fhir.ch/ig/ch-core/ImplementationGuide/ch.fhir.ig.ch-core> Version: 6.0.0

Active as of 2025-12-16 Computable Name: CH_Core

Copyright/Legal: CCO-1.0

1.1 Introduction

This implementation guide is provided to support the use of FHIR[®] in Switzerland.

This guide is a working specification. We anticipate that it will be implemented and tested by FHIR system producers whose feedback will help improve its content. With this standard for trial use, we are looking for feedback on whether the following goals have been met:

- The guide provides guidance on essential resources for identifiers, code systems, value sets and naming systems in Switzerland, specifically in relation to the Swiss Electronic Patient Record (EPR).
- The guide defines extensions that are necessary for local use in Switzerland.
- The guide covers the requirements for eCH-0010 postal address (V7.0), eCH-0046 contact (V5.0) and eCH-0011 personal data (V8.1) (including eCH-0007 municipality (V6.0) and eCH-0021 additional personal data (V7.0)).
- The guide incorporates Federal Statistics Office (BFS) variables for medical statistics. See [BFS](#) (available in German, French and Italian).
- The guide does not define additions to the FHIR API, for further FHIR API definitions please refer to:
 - CH EPR FHIR - Swiss EPR FHIR Implementation Guide
 - IPA (International Patient Access) - International FHIR API specification for patient access
 - or other FHIR Implementation Guides

Source: <https://fhir.ch/ig/ch-core/index.html>

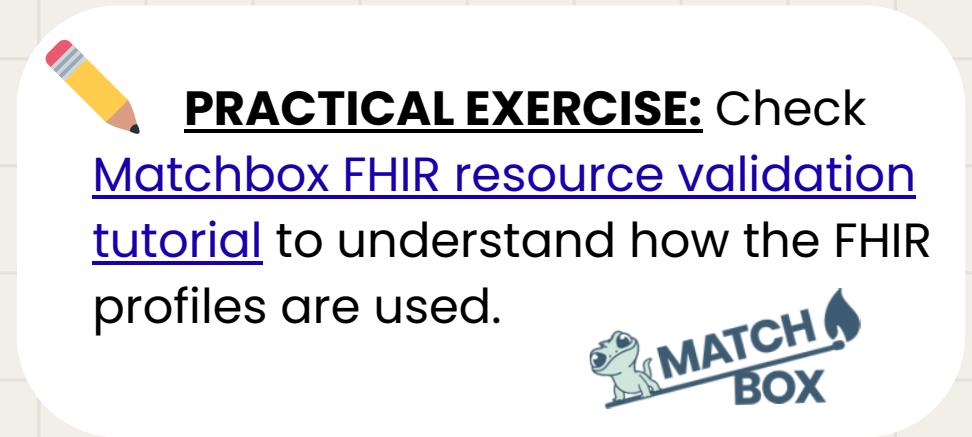
🔍 **Explore official documentation Publisher for generating FHIR interoperability guides**

To generate these implementation guides, an **open-source tool maintained by the FHIR community itself is used (Publisher)**, which generates this web page ready to deploy from the 3 fundamental elements of the guides we listed earlier.

Scalable FHIR Implementation Guides

A FHIR interoperability guide is a software project.

To ensure that all developments derived from it are robust and maintainable over time, **its components must be managed using source code control.**


This allows implementers:

- ✓ following the guide to track its evolution
- ✓ adapt to new version changes
- ✓ and maintain a clear lineage between the guide and the implementations.

FHIR profiles in a implementation guide

The FHIR profile is the most important element of an implementation guide. It defines the syntactic and semantic structure of a dataset for a specific use case.

Source:

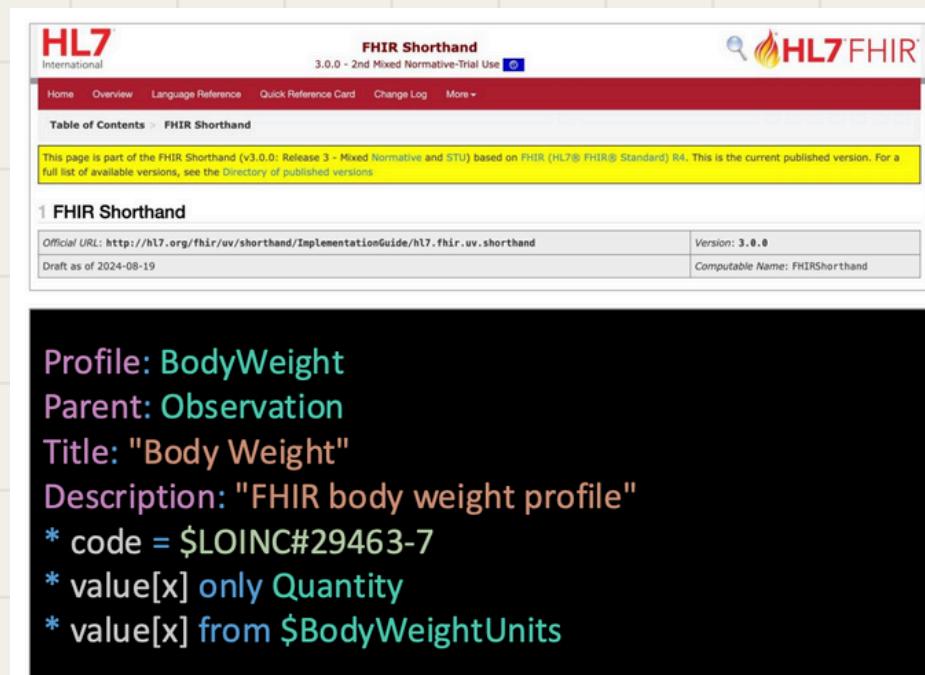
<https://confluence.hl7.org/spaces/FHIR/pages/265100106/FSH+Tooling+Community+Kick+Off+Webinar>

Maintaining FHIR profiles over the time

Maintaining the FHIR profiles in JSON or XML has been quite a challenge for FHIR experts. **Over time, FHIR profiles have been maintained:**

- Directly editing the JSON or XML by hand.
- Excel spreadsheets that later generate the json or xml structures.
- graphical interfaces that modifies the json or xml directly.
- **FHIR Shorthand language** – a programming language that through a Javascript library called **sushi** generates the json or xml structures.

Source: <https://build.fhir.org/ig/HL7/fhir-shorthand>



FHIR Shorthand language

Allows managing implementation guides like any software project:

- ✓ it reduces the complexity of managing FHIR profiles in JSON and XML
- ✓ enabling the introduction of CI/CD and source code control
- ✓ not dependent on OS

 Here a registry of FHIR interoperability guides using FSH

The screenshot shows the FHIR Shorthand website. The top navigation bar includes 'Home', 'Overview', 'Language Reference', 'Quick Reference Card', 'Change Log', and 'More'. The main content area displays a profile for 'BodyWeight'. The profile details are as follows:

- Profile:** BodyWeight
- Parent:** Observation
- Title:** "Body Weight"
- Description:** "FHIR body weight profile"
- Code:** \$LOINC#29463-7
- Type:** value[x] only Quantity
- Source:** value[x] from \$BodyWeightUnits

- ⌚ Concise, readable, understandable
- ⌚ Rapid changes via text operations
- ⌚ Collaborative authoring w/ source code control
- ✓ Error checking & application of best practices
- ⌚ Combine with other profiling approaches
- HL7 Balloted Standard, built into IG Publisher

Source:

<https://confluence.hl7.org/spaces/FHIR/pages/265100106/FSH+Tooling+Community+Kick+Off+Webinar>

Start with FHIR Shorthand language

The go-to resource for learning the FHIR Shorthand language is the official [FSH School website](#) and [installing FHIR Shorthand](#) is quite straightforward.

If you want to start learning the language **without any installation**, I recommend using [FSH Online tool](#). In our tutorial, we will use this tool, and the following image shows the features you should learn to use marked in yellow.

The screenshot shows the FSH Online tool interface. At the top, a yellow circle with the number '2' highlights the 'Convert to JSON' button. The main area shows FSH code on the left and its corresponding FHIR JSON output on the right. A yellow circle with the number '1' highlights the 'Console' tab at the bottom left, which displays log messages. The right side of the interface shows a sidebar with 'Profiles' and 'example-patient-profile' selected.

2 Convert your FSH to JSON

FSH Examples Convert to JSON ▶ Convert to FSH Save All Configuration

FSH

```
24 // Mark elements as MustSupport
25 * name and name.given and name.family MS
26
27 // Provide custom prose descriptions of the `name` element:
28 //
29 // The contents of `^short` appears in the "Description & Constraints" column
30 // snapshot tables of a built Implementation Guide.
31 //
32 // The `^definition` displays when clicking on an element's name in the diff
33 // tables when building a built Implementation Guide. This can also be accessed
34 // in the "Descriptions" tab on a profile page.
35 * name ^short = "Official name (i.e., legal name) of patient"
36 * name ^definition = "Official name (i.e., legal name) of the patient, corresponding to a
37 // The contents of `^comment` are also displayed on the "Detailed Descriptions" tab in the built
38 // Implementation Guide.
39 * birthDate ^comment = "If exact date of birth is partially or completely unknown, use this
40 // element to indicate that the date is unknown.
41 // Do not allow `gender` to be included.
42 * gender 0..0
43
44 // Require a value from a specific value set be used for an element
45 * maritalStatus from http://hl7.org/fhir/ValueSet/marital-status (required)
46
47 // Restrict `something[x]` to a specific type -- in this case only allowing
48 * deceased[x] only dateTime
49
```

FHIR JSON: example-patient-profile

```
1 {
2   "resourceType": "StructureDefinition",
3   "id": "example-patient-profile",
4   "url": "http://example.org/StructureDefinition/example-patient-profile",
5   "version": "1.0.0",
6   "name": "ExamplePatientProfile",
7   "title": "Example Patient Profile",
8   "description": "Example of a profile of Patient",
9   "fhirVersion": "4.0.1",
10  "kind": "resource",
11  "abstract": false,
12  "type": "Patient",
13  "baseDefinition": "http://hl7.org/fhir/StructureDefinition/Patient",
14  "derivation": "constraint",
15  "differential": {
16    "element": [
17      {
18        "id": "Patient.name",
19        "path": "Patient.name",
20        "short": "Official name (i.e., legal name) of patient",
21        "definition": "Official name (i.e., legal name) of the patient, corresponding to a
22        "min": 1,
23        "mustSupport": true
24      },
25      {
26        "id": "Patient.name.family",
27        "path": "Patient.name.family",
28        "short": "Family name of patient",
29        "definition": "Family name of the patient, corresponding to a
30        "min": 1,
31        "mustSupport": true
32      }
33    ]
34  }
35}
```

Console Problems 0

```
info Loaded virtual package sushi-r5forR4#1.0.0 with 7 resources
info Resolved hl7.fhir.uv.tools.r4#latest to concrete version 0.9.0
info Loaded hl7.fhir.uv.tools.r4#0.9.0 with 118 resources
info Resolved hl7.terminology.r4#latest to concrete version 7.0.1
info Loaded hl7.terminology.r4#7.0.1 with 4097 resources
info Loaded hl7.fhir.r4.core#4.0.1 with 4582 resources
info Resolved hl7.fhir.uv.extensions.r4#latest to concrete version 5.2.0
info Loaded hl7.fhir.uv.extensions.r4#5.2.0 with 760 resources
info Importing FSH text...
info Preprocessed 1 documents with 0 aliases.
info Imported 1 definitions and 0 instances
```

1 Uncollapse the console to view the errors.

Source:

<https://fshonline.fshschool.org/#/>

LET'S GO!

Create a FHIR profile

PRACTICAL EXERCISE: Using [FSH Online](#), define a Practitioner profile named MyPractitioner. This profile must support the name, identifier, and qualification (to specify the specialty) fields. The identifier element should be sliced to support various types (e.g., Passport, National ID), but it must mandate exactly one 'License Number' with the fixed system <http://example.com/myLicenseNumberIdentifier>. Finally, generate a compliant Instance of this profile.

click here to see the [PROFILE SOLUTION](#)

click here to see the [INSTANCE SOLUTION](#)

click here to see what happens when creating an instance that does not follow the rules ([WRONG INSTANCE](#))

3

EXTRA TIP: Go to the left corner of the FSH Online, click "FSH Examples" and inspire on the examples to do the exercises!

FSH Examples

In this exercise you have learned to:

- define supported fields for your profile with respect to a reference FHIR resource,
- set a field as required,
- link a field to a specific text pattern,
- and to perform the technique called FHIR slicing*.

FHIR SLICING is a mechanism that allows you to take a repeating element (such as a list of identifiers) and "segment" it into specific groups based on defined criteria. What is it for? Imagine you have the Patient.identifier element. By default, it is just a list of IDs. With slicing, you can say: "I want this list to mandatorily have one element that is a National ID, and optionally, other elements that are Passports." You are defining different rules for different elements within the same list.

Make your FHIR profile work with terminologies

PRACTICAL EXERCISE: Using [FHIROnline](#), create a FHIR value set with the following SNOMED codes (system = <http://snomed.info/sct>):

- 394579002 "Cardiology"
- 394588006 "Pediatric oncology"
- 394593009 "Medical oncology"

and bind it to the field qualification in required mode. Finally, generate a compliant Instance of this profile.

click here to see the [PROFILE SOLUTION](#)

click here to see the [INSTANCE SOLUTION](#)

click here to see what happens if we create an instance that does not follow the rules ([WRONG INSTANCE](#)) 😅 do not panic !

Even though we are using a code that doesn't exist in SNOMED and isn't included in our ValueSet, FHIROnline doesn't complain. Why? Because to perform terminology validation, you need the FHIR validator, not SUSHI. In the following link, I'm sending you an [example of a validation in Matchbox](#) where a code is used that exists neither in SNOMED CT nor in the required ValueSet.

Feature	SUSHI Validation	FHIR Validator
Primary Goal	Validates FSH (Shorthand) syntax and logic.	Validates FHIR Resources (JSON/XML) against profiles.
Input Type	.fsh files (Shorthand code).	.json or .xml (Patient, Observation, etc.).
Validation Level	Basic (Paths, cardinalities, syntax).	Deep (Terminology, FHIRPath, slicing).
When to Use	During Development (authoring profiles).	During Testing/Production (checking data).
Core Engine	TypeScript-based compiler.	Java-based reference validator.
Example	FSH Online tool	Matchbox

In this exercise you have learned to:

- create a value set,
- bind a value set to a field of a profile,
- and differences between Sushi Validation and FHIR Validation.

Customize your FHIR profile with extensions

PRACTICAL EXERCISE: Using [FSHOnline](#), create a FHIR extension where I can place the years of experience of the Practitioner. Finally, generate a compliant Instance of this profile.

click here to see the [PROFILE SOLUTION](#)

click here to see the [INSTANCE SOLUTION](#)

The creation of both new profiles and new extensions should be thought through first. Someone might have had the same use case before you.

In this exercise you have learned to:

- ✓ create an extension,
- ✓ link the extension to a specified FHIR profile,
- ✓ and where to find extensions.

Here a [registry](#) of [FHIR extensions](#)

Create your FHIR profile inheriting from another FHIR profile

PRACTICAL EXERCISE: Using [FSHOnline](#), go to [Patient resource of International Patient Summary \(IPS\) FHIR Implementation Guide](#), copy the json resource and transform it to .fsh. Add your own profile called My Patient, inherit from IPS Patient and determine as must support language, gender, name and birthdate.

click here to see the [PROFILE SOLUTION](#)

click here to see the [INSTANCE SOLUTION](#)

click here to see what happens if [we validate our instance directly inheriting from International Patient Summary Implementation Guide](#) against a

FHIR Validator.

 We have just defined the attributes that we are going to populate for our use case and our profile is compliant and at the same with this known Implementation Guide.

In this tutorial
we recycle
FHIR profiles

In this exercise you have learned to:

- ✓ create a profile from another FHIR profile
- ✓ and to follow another FHIR profile at the same time that we add our own specifications.

Customize your FHIR profile with invariants

PRACTICAL EXERCISE: go to the [Patient resource from International Patient Summary in fsh](#), scroll down and identify one invariant and how you can link that invariant to a profile. That is an invariant

```
Invariant: ips-pat-1
Description: "Patient.name.given, Patient.name.family or Patient.name.text SHALL be present"
* severity = #error
* expression = "family.exists() or given.exists() or text.exists()"
* xpath = "f:given or f:family or f:text"
```

This invariant tells you that if you populate the name field you have to populate the field family, given or text.

check this example that has just populated name.use in FHIROnline tool, sushi validation is not complaining because is complaint with FHIR but...

click here to [validate the instance in the FHIR Validator](#).

FHIR INVARIANTS or constraints are formal rules that define business logic or clinical requirements that cannot be captured by simple data structures or cardinality alone. FHIRPath is the standard language used to write the logic for invariants.

🔍 Explore [official documentation of FHIRPath](#)

In this exercise you have learned to:

- ✓ recognize an invariant,
- ✓ link an invariant to a profile,
- ✓ and validate an invariant.

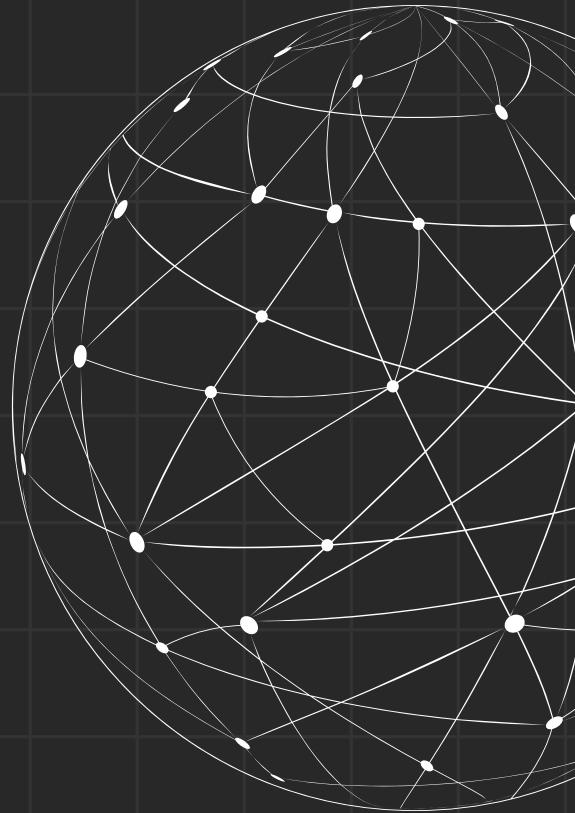
🤩 Extra points section: let's build our Implementation Guide with FSH profiles

- Install [**Publisher requirements**](#)
- Install [**sushi requirements**](#)
- Open your terminal:

```
>sushi init  
>cd ExampleIG  
>./_updatePublisher.sh  
>./_genonce.sh
```

In sushi init leave everything by default
In ./updatePublisher.sh say YES !

- Go to output folder and open index.html 😊
- Take one of the .fsh files of the tutorial, create a new .fsh file and place it in input/fsh folder. Run `./_genonce.sh` and open /output/index.html.


In this exercise you have learned to:

🔥 **build a FHIR Implementation Guide with FHIR Shorthand language FHIR profiles.**

From theory to practice: sharing direct lessons to drive digital health.

More information at yolandasabuco.io

Was this post Helpful?

Contact me:

yolandasabuco.io

[yolanda-sabuco-garcia](#)

[yoliyu](#)

info@yolandasabuco.io

